Development of a global dynamic AMSR-E land surface emissivity database

J.-L. Moncet, J. Galantowicz, P. Liang, C. Grassotti, Y. He AER, Inc.

C. Prigent
Observatoire de Paris, LERMA

Goals

- 3 Yr effort 2 more yrs to go
- Main goal: Provide emissivity constraint for lower tropospheric and LST retrievals over land. Critical for assimilation of satellite data in NWP model.
 - Under cloudy conditions extrapolate emissivities from clear-sky
 - For this application, a priori uncertainty on emissivities < ~0.01 is required
- Not sure that static maps of monthly averages are sufficient
 - Monthly averages may be affected by frequency of precipitation events in a particular year and do not reflect inter-annual variability
 - Best to monitor time evolution of emissivity at any given location and attempt to predict (may include surface models)
- Data is also useful for short/long term monitoring of changes in surface properties and improving understanding of physical mechanisms affecting surface radiation budget
 - System can be extended to include IR emissivities as well
- Pathfinder for future NPOESS operational system (CMIS)

System Overview

- Heritage: previous work of C. Prigent with SSM/I
 - AMSR-E adds 6 and 10 GHz
- Complements on-going work at JCSDA with AMSU (AGRMET)
- MODIS provides excellent timeliness and co-location for LST but may have its own problems (see below) and may differ from ISCCP used with SSM/I
- AIRS same problems with AIRS retrieval over land forces us to use NWP source instead
- 1-D VAR retrieval system
 - clear/cloudy retrieval modes
 - full use of AMSR-E spectral information content
 - flexible use of atmospheric/ surface external constraint

System overview

- Retrieval to be performed at all AMSR-E footprints
- Emissivity at a grid point obtained as weighted average of neighboring "high quality" FOV's
- QC:
 - Level 2A (B01) AMSR-E QA flag
 - MODIS cloud mask/cloud product
 - Initial system used MODIS cloud mask to monitor quality of AMSR measurement (and when AIRS is used provide additional QC for AIRS product)
 - Cloud mask has deficiencies at night
 - MODIS level 3 LST flag
 - Similar to MODIS cloud mask (used as a substitute)

Emissivity Database

- 27.8 km sinusoidal grid spacing, no time averaging
- LST (+profile?)
- CLW in cloudy conditions
- Flag following situations:
 - 1. Inhomogeneous surface high variability due to re-gridding
 - 2. Transient events (precipitation,...etc)
 - 3. Persistent day/night variability:
 - High penetration depth areas
 - Terrain slope (azimuthal dependence)
 - 4. Other:
 - Unscreened clouds (89 GHz)
 - Large PW errors (use 19, 22 and 89 GHz)
 - Missing radiometric/external data
 - Retrieval mode

19V AMSR-E Emissivity Map 07/03 (51x29 km res., nighttime only)

Planned verification

- No in situ means of validating product
- Planned verification:
 - Consistency with AMSR-SM product and previously derived SSM/I emissivities (make it part of our automated system?)
 - Time stability (outside of precipitation events)
 - Diurnal surface temperature cycle captured
 - Improvement in cloud liquid water (CLW) detection over land
 - Comparison between NOAA-16 AVHRR and retrievals with and without a priori local emissivity estimates
 - Radiometric and physical consistency with IR measurements

AMSR-E vs. SSM/I (19H) Comparison

DMSP-SSM/I (07/92):

- Early morning/late afternoon passes
- ISCCP cloud mask and LST products
- NCEP global re-analysis

AMSR-E (07/03):

- Night only (1:30am ECT)
- MODIS LST
- NCEP/GDAS atmosphere
- Transient events
 (precipitation) included in monthly means

Emissivity change detection (through time series analysis, 10V)

- Cloudy regions not filtered out => low "LST" => high estimated emissivity
- Monitoring consistency between regions of high AMSR soil moisture and low surface emissivity

Pending questions

- 1) Local LST biases: Various LST sources provide significantly different results
 - Sources considered (MODIS, GDAS/NOAH (LSM), AGRMET, AIRS, ISCCP) provide vastly different results especially in the daytime
 - Agreement is better at night than during the day
 - Not much we can do about that aside from ensuring consistency with AMSR-E
 measurements both spectrally (where atmosphere is sufficiently moist to provide ability of
 separating LST from emissivity) and in time (including diurnal cycle) over "easy" regions
 - Could be an issue for relating AMSR-E to Prigent SSM/I data (ISCCP LST)
- 2) Penetration depth/sub-surface temperature gradients
- Earth gridding/spatial variability errors
- 4) Azimuthal dependence/terrain slope
- 5) Emissivity retrieval in regions of quasi-permanent cloud cover
- 6) Dew?
 - Effect at time of overpass should be minimal may still check for possible dew based on meteorological conditions
- 7) Calibration
 - New calibration over land available in 2006?
 - When will reprocessed data be available (current data does not have 89 GHz)?
 - Need to understand calibration process
 - Monitoring of consistency with SSM/I and TMI?
- 8) MODIS cloud mask (night time)

- LST sources agree better at night (here)
- Large discrepancies during day time (next)
- MODIS preferred for timeliness and co-location

Daytime difference maps

 Nighttime difference histograms

 Daytime difference histograms

Gridding Errors

- Earth gridding code includes several distance-weighting interpolation methods
- Test results with high-resolution emissivity scenes sampled at 50 km resolution:
 - Gaussian-weighted interpolation has best RMS gridding errors
 - With >0.9 land fraction, RMS emissivity error is < 0.003
 - With 0.1-0.9 land fraction, RMS emissivity error is ~0.012-0.018
- Gridding component of AMSR emissivity retrieval error budget should be comparable
 - Gaussian-weighted interpolation to be added to AMSR processing
 - Should improve retrieval variance especially near coastlines
- Alternative approaches include
 - Water fraction estimate and removal from total emissivity
 - Issue: Water level vary with season
 - Footprint match to fixed Earth grid and perform retrieval afterwards
 - Issue: Clouds

Day-Night AMSR-E Emissivity differences

Day-Night AMSR-E Emissivity differences

- Daytime emissivities much too low over widespread arid/semi-arid areas areas (generally good agreement elsewhere)
 - Most likely due to penetration depth in rock/dry soils/sand/some canopies (?)
- Not observed in previous SSM/I work (Prigent, 1992) outside of sand deserts?
 - Potential reasons are time of the DMSP overpasses (early morning/late afternoon)

~= e(night)*Ts(day)

High penetration depth areas

- RT equation: $Tb_{\nu} = T_{\nu}^{\uparrow} + \tau_{\nu} \varepsilon_{\nu} T_{s} + \tau_{\nu} (1 \varepsilon_{\nu}) T_{\nu}^{\downarrow}$ (1)
- Strong sub-surface temperature gradients occur with high surface heat flux conditions
- Day/night change in gradient combined with lower penetration depth at higher frequency causes changes in the "apparent" emissivity spectrum retrieved from (1), i.e. (1) is invalid
- Penetration depth may reach ~20 cm at 19 GHz in dry sandy areas (Prigent, 1999)
- Preliminary static maps of high penetration depth
 - Based on diurnal change in Tb slope in V-pol.
 - 19V/11V and 37V/19V Tb ratios considered

Night-Day TB slope difference

Automated temporal/spectral cluster analysis

- Full spectral and time (~2 weeks) dimensions taken into account
- Removal of atmospheric effects and correction of NCEP/GDAS first-guess
- LST-independent
 - Assumption is that impact of ∆LST on emissivity spectrum differs from impact of other factors
 - Flagging based on cluster analysis
- Uses information content of AMSR measurements to verify that input LST is within allowable range

Calibration?

 Even severe calibration problems should not change sign of 11-19 GHz slope

Future (near-term) work

- Investigate possibility of adding SSM/I (TMI?)
 - Ensures continuity with heritage SSM/I work (provides comparison with SSM/I and AMSR)
 - Increased temporal sampling (adds early morning and late afternoon passes)
 - Issues re. ISCCP (used for SSM/I) vs. MODIS LST? Differences minimized at local time of SSM/I orbit.
- Assess feasibility of modeling sub-surface effects (penetration depth, thermal conductivity,...etc)
 - Need capability to estimate penetration depth and/or temperature profile
 - NOAH model could be a good starting point (parameterized thermal conduction) and surface emissivity / albedo (cooling/heating)
 - Use times with small sub-surface gradient to infer emissivity (night?)
 - Use other times to assess penetration depth (stable in time as long as emissivity does not change)
- Refine error flagging (difficult terrain, emissivity change detection) and assess time variability
- Cloudy retrievals (model is only source for Ts)